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Abstract 

Biomedical relation classification has been significantly improved by the application of advanced machine learning 
techniques on the raw texts of scholarly publications. Despite this improvement, the reliance on large chunks of raw 
text makes these algorithms suffer in terms of generalization, precision, and reliability. The use of the distinctive 
characteristics of bibliographic metadata can prove effective in achieving better performance for this challenging 
task. In this research paper, we introduce an approach for biomedical relation classification using the qualifiers of co-
occurring Medical Subject Headings (MeSH). First of all, we introduce MeSH2Matrix, our dataset consisting of 46,469 
biomedical relations curated from PubMed publications using our approach. Our dataset includes a matrix that maps 
associations between the qualifiers of subject MeSH keywords and those of object MeSH keywords. It also specifies 
the corresponding Wikidata relation type and the superclass of semantic relations for each relation. Using MeSH2Ma-
trix, we build and train three machine learning models (Support Vector Machine [SVM], a dense model [D-Model], 
and a convolutional neural network [C-Net]) to evaluate the efficiency of our approach for biomedical relation clas-
sification. Our best model achieves an accuracy of 70.78% for 195 classes and 83.09% for five superclasses. Finally, 
we provide confusion matrix and extensive feature analyses to better examine the relationship between the MeSH 
qualifiers and the biomedical relations being classified. Our results will hopefully shed light on developing better algo-
rithms for biomedical ontology classification based on the MeSH keywords of PubMed publications. For reproduc-
ibility purposes, MeSH2Matrix, as well as all our source codes, are made publicly accessible at https://​github.​com/​Sison​
keBio​tik-​Africa/​MeSH2​Matrix.
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Introduction
Biomedical relation classification involves identifying 
and categorizing relationships between biological enti-
ties, such as genes, proteins, diseases, and drugs, within 
biomedical texts. This task is crucial for advancing medi-
cal research and has diverse applications [1, 2], as it helps 
in organizing and extracting valuable insights from the 
vast and growing body of biomedical literature. Biomedi-
cal relation classification has seen significant improve-
ment from the application of advanced machine learning 
techniques on free-form text from large collections of 
scholarly publications. Despite this improvement, the 
reliance on large chunks of raw text makes these algo-
rithms suffer in terms of generalization, precision, and 
reliability, due to the complexity and variability of natural 
language [3, 4]. Instead of relying solely on text, our work 
tackles biomedical relation classification by leveraging an 
often overlooked aspect of scholarly publications – their 
bibliographic metadata. It is standard practice for schol-
arly publications, especially in the biomedical domain, to 
have a bibliographic metadata section where they pro-
vide metadata about the scholarly work. This metadata 
is machine-readable, and provides simple (as opposed to 
complex free-form text), concise information about the 
publication. One such important information provided is 
the Medical Subject Headings (MeSH) keywords, which is 
represented as a biomedical ontology.

An ontology is made up of two concepts related to 
each other and is represented using statements in the 
form of triples: Subject (Concept), Predicate (Relation 
Type – encoding the nature of the relationship between 
the two concepts), and Object (Concept) [5]. As a result, 
biomedical ontologies can be easily enriched, processed, 
validated, and reused by machines [6]. These ontologies 
are typically manually curated through human experts 
(e.g., physicians and ontologists), consortiums (e.g., Open 
Biomedical Ontologies Consortium), and institutions (e.g. 
NIH National Center for Biomedical Ontology) [7].

Medical Subject Headings (MeSH) keywords used to 
annotate PubMed scholarly publications can be a very 
useful resource for biomedical relation extraction and 
classification [8]. Based on MeSH taxonomy, it always 
assigns the same concept to various publications in Pub-
Med using the same term [8]. Consequently, the use of 
MeSH keywords as input for biomedical ontology engi-
neering can be more efficient than the use of user-gen-
erated bibliometric metadata and raw texts of scholarly 
publications [8]. In this research paper, we propose an 
approach for biomedical relation classification using the 
associations of the MeSH keywords in PubMed records. 
The main aim of the work is to verify whether the asso-
ciations of the attributes of the subject and object MeSH 
keywords can contribute to the classification of the 

analyzed biomedical relations or not. For this, we will 
use the biomedical relations between MeSH terms as 
revealed by Wikidata, an open and collaborative knowl-
edge graph available at https://​www.​wikid​ata.​org [9], to 
construct the training dataset named MeSH2Matrix for 
biomedical relation classification using our method. Our 
dataset provides a matrix of the association between the 
subject MeSH qualifiers and the object MeSH qualifi-
ers, a relation type, and a superclass for every relation. 
Then, we will train three machine-learning models on 
this dataset: a support vector machine (SVM), a dense 
model (D-Model), and a convolutional neural network 
(C-Net). This paper builds upon preliminary work on 
the generation of this large-scale dataset presented at 
BIR@ECIR 2022 Workshop [10]. The significant addi-
tional contribution is the in-depth feature analysis of 
the C-Net and D-Model models to evaluate how the 
MeSH qualifier features impact the model’s class pre-
dictions (using the 5-class prediction case). This feature 
analysis is elaborately outlined in “Insights from feature 
analyses” section.

We will begin by giving an overview of MeSH Key-
words and how they have contributed so far to enhanc-
ing tasks in Biomedical Informatics (“MeSH keywords 
as a valuable input”  section). Then, we will describe 
Wikidata as a biomedical knowledge resource and 
explain how it can be used to extract biomedical rela-
tions between the MeSH terms (“Wikidata as a biomed-
ical semantic resource” section). We will also provide a 
literature review of the state-of-the-art of biomedical 
relation classification (“Biomedical relation classifica-
tion” section). As well, we will describe the prior works 
about biomedical relation classification using PubMed 
to prove the originality of our methods (“Prior works on 
biomedical relation classification using PubMed”  sec-
tion). After that, we will explain our proposed approach 
for the development and evaluation of biomedical rela-
tion classification based on the MeSH keywords of 
PubMed scholarly publications (“Methodology”  sec-
tion). Later, we will provide a description of the MeSH-
2Matrix dataset and assess its quality by comparing its 
main features to previous research findings (“MeSH-
2Matrix dataset”  section). Subsequently, we will out-
line our results for the biomedical relation classification 
using accuracy rates and confusion analysis based on 
MeSH2Matrix (“Experimental results on biomedical 
relation classification using MeSH2Matrix”  section). 
Afterwards, we will study the significance of the fea-
tures of the matrices to machine-learning models using 
Integrated Gradients (“Insights from feature analy-
ses” section). Finally, we will conclude our experiments 
and provide future directions for our research paper 
(“Conclusion” section).

https://www.wikidata.org
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Related works
MeSH keywords as a valuable input
As a controlled vocabulary, MeSH supports sixteen types 
of biomedical concepts ranging from anatomical struc-
tures to symptoms, diseases, and drugs1 [11]. This broad 
coverage of MeSH Terms makes them useful to represent 
the topics of all scholarly publications [11]. The value of 
these terms is further increased by the regular revision of 
MeSH to include new concepts such as COVID-192 and 
SARS-CoV-23 and to cover updates in the biomedical 
nomenclature [12]. That is why it has been used to anno-
tate PubMed records for years by the human curators of 
the bibliographic database to enable consistent indexing 
of scholarly papers and intuitive data mining [11, 13]. 
Beyond its contribution to the enhanced topic granular-
ity in PubMed, MeSH keywords have the ability to repre-
sent facets of a given topic through the use of predefined 
subheadings known as MeSH qualifiers providing more 
precision to the MeSH keywords of the PubMed records 
[4, 8]. Currently, there are 89 MeSH qualifiers4. repre-
senting all the characteristics and features of a biomedi-
cal entity as revealed at https://​www.​nlm.​nih.​gov/​mesh/​
subhi​erarc​hy.​html (List at Table S1).

These interesting features of the MeSH keywords 
encouraged its usage beyond information seeking. 
MeSH keywords are gaining an increasing popularity 
in biomedical information retrieval as they allow better 
accuracy for relation extraction and classification from 
PubMed [13, 14]. This is due to the restriction of the 
considered publications to the ones that are most likely 
to include the required information [14] and the analy-
sis of the co-occurrences of the MeSH Keywords [13]. 
The better output of clinical knowledge engineering 
driven by the MeSH terms of the PubMed publications 

has proven the value of MeSH Keywords, especially 
when assigned controlled qualifiers, to classify bio-
medical relations [4, 8]. Essentially, the qualifiers of 
two co-occurring MeSH keywords can inform us of the 
nature of the semantic relation between them as shown 
in Table 1 and Fig. 1. This is particularly motivated by 
the fact that biomedical publications usually have nar-
row research scope and do not consequently study mul-
tiple and unrelated facets of a given topic unless the 
publication type is an encyclopedic review [15]. The 
qualifiers of the MeSH keywords can be easily found 
as they are simply separated from their corresponding 
headings using a slash (/). The MeSH keywords of Pub-
Med scholarly publications can be retrieved from the 
NCBI Entrez API using the Biopython Python Library 
[16, 17]. The structured format of MeSH keywords and 
their simple retrieval from the PubMed bibliographic 
database encourage their usage for the biomedical rela-
tion extraction and classification.

Wikidata as a biomedical semantic resource
Wikidata was created in October 2012 as a knowledge data-
base to support structured data in Wikipedia such as inter-
language links and infoboxes [18]. However, it has grown 
over the past years to become one of the largest free and 
open knowledge graphs covering various range of fields, 
particularly biomedicine [9]. Its collaborative and crowd-
sourcing-based enrichment, regular updates according to 
recent advances in the major areas of interest, etc make it the 
most adequate knowledge base to support ever-changing 
scholarly evidences, mainly in the context of the COVID-19 
pandemic [19]. Currently, Wikidata represents various types 
of medical entities as items, such as drugs, diseases, genes, 
proteins, organs, and symptoms [9]. These items are linked 
to their equivalent entities in external knowledge resources, 
mainly MeSH [19]. Every entity is assigned a language-
independent identifier (so-called Q-number) as well as its 
main names (labels), glosses (descriptions), and alternative 
names (aliases) in a variety of natural languages, particularly 
English as shown in Figure D1 [9, 19]. Furthermore, entities 
are related to other ones using semantic relations (Subject - 
Predicate - Object) where the relation type (Predicate) is also 
a Wikidata entity having its own identifier (P-number) and 
semantic description [9, 20].

Table 1  Examples of relation types corresponding to the associations of two MeSH Keywords. MeSH Qualifiers contributing the 
relation type are indicated in bold

MeSH keyword 1 MeSH keyword 2 Relation type

Sofosbuvir/therapeutic use Hepatitis C/drug therapy Medical Condition Treated

Asthma/complications Dyspnea/etiology Symptom

Retinopathy/prevention & control Diabetes Mellitus/complications Risk Factor

1  https://​www.​nlm.​nih.​gov/​bsd/​disted/​mesht​utori​al/​mesht​reest​ructu​res/​
index.​html.
2  https://​www.​ncbi.​nlm.​nih.​gov/​mesh/​20521​79.
3  https://​www.​ncbi.​nlm.​nih.​gov/​mesh/​20521​80.
4  They are only 76 MeSH Qualifiers: administration & dosage, blood, cer-
ebrospinal fluid, urine, embryology, agonists, antagonists & inhibitors, 
genetics, immunology, supply & distribution, adverse effects, poisoning, and 
pharmacokinetics are unintentionally left duplicates as they are included 
twice in the list of MeSH Qualifiers at https://​www.​nlm.​nih.​gov/​mesh/​subhi​
erarc​hy.​html to highlight multiple contexts of their usage.

https://www.nlm.nih.gov/mesh/subhierarchy.html
https://www.nlm.nih.gov/mesh/subhierarchy.html
https://www.nlm.nih.gov/bsd/disted/meshtutorial/meshtreestructures/index.html
https://www.nlm.nih.gov/bsd/disted/meshtutorial/meshtreestructures/index.html
https://www.ncbi.nlm.nih.gov/mesh/2052179
https://www.ncbi.nlm.nih.gov/mesh/2052180
https://www.nlm.nih.gov/mesh/subhierarchy.html
https://www.nlm.nih.gov/mesh/subhierarchy.html
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There are two major kinds of relation types: taxo-
nomic or non-taxonomic ones [9, 19]. Taxonomic 
relations are hierarchical ones that link an entity to 
its parent class or constituents (e.g., instance of [P31] 
- Figure D2) [9]. Non-taxonomic relation types are 
non-hierarchical ones that are assigned to define spe-
cialized knowledge such as biomedical information 
(e.g., signs or symptoms [P780] - Figure D3) [9]. A 
non-taxonomic relation can be symmetric: where the 
subject-object inversion would not affect the meaning 
of the statement. If this condition is not fulfilled, the 
relation in non-symmetric [20]. Such a classification of 
biomedical relation types can be easily inferred from 
the semantic information about Wikidata relation 
types, particularly the property constraints providing 
conditions for the definition of relational statements 
(Figure D4) [20]. These conditions are not only use-
ful for the validation of semantic information about 
the semantic relations but also to recognize the dis-
tinctive features of relation types. Moreover, Wikidata 
items are also matched to their equivalents in exter-
nal resources using non-relational statements in the 
form of triples where the predicate reveals the aligned 
resource and the object is the identifier of the con-
cept in the external database [20]. Particularly, MeSH 
Descriptor ID [P486] statements align between MeSH 
terms and Wikidata items as revealed by Figure D5. 
As Wikidata knowledge graph is developed using the 
Resource Description Framework (RDF) format, it can 
be easily processed to get subsets of semantic infor-
mation needed to drive knowledge-based applications 
using a variety of tools, particularly the MediaWiki 

API5, the Wikidata SPARQL query service6, and the 
Wikibase Integrator Python Library7.

Biomedical relation classification
Biomedical relation classification is the assignment of a 
relation type to a pair of biomedical entities after confirm-
ing their semantic relatedness based on natural language 
processing and information retrieval techniques [3]. 
Although recent works tried to use pre-trained language 
models such as BERT and GPT for biomedical relation 
classification [21], this gold standard is to create classi-
fication algorithms based on two layers; the Embedding 
layer and the Machine Learning layer [3]. Embeddings 
allow converting the environment of the two related con-
cepts into a uni-dimensional (vector) [22], bi-dimensional 
(matrix) [23], or tri-dimensional (box) [24] array rep-
resentation [3]. Embeddings provide an abstract repre-
sentation of the context of the semantic association that 
can be used to train machine learning models to classify 
biomedical relations [3]. Machine learning techniques 
for biomedical relation classification include reinforce-
ment learning [25], neural networks [3], support vec-
tor machines [26], and rarely adversarial learning [27] as 
well as ensemble learning methods, such as XGBoost [28]. 
Most of these works consider a limited number of relation 
types ( < 10 ) for the supervised classification [3, 28]. These 
relation types mainly cover significant drug and protein 
interactions, drug adverse effects, drug administration 

Fig. 1  Principle for converting two complementary MeSH qualifiers into a biomedical relation type

5  https://​www.​wikid​ata.​org/w/​api.​php.
6  https://​query.​wikid​ata.​org.
7  https://​github.​com/​LeMyst/​Wikib​aseIn​tegra​tor.

https://www.wikidata.org/w/api.php
https://query.wikidata.org
https://github.com/LeMyst/WikibaseIntegrator
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routes, disease-drug relations, risk factors, and gene 
expressions [3, 28, 29].

Although several works will try to use Electronic 
Health Records (EHRs) as input for biomedical rela-
tion classification [28], most of the previous research 
has emphasized free online textual resources as inputs 
for biomedical relation classification algorithms [3, 21]. 
These resources involve general-purpose databases such 
as Wikipedia, news corpora, and Common Crawl [3]. 
But, the most important resources used in this context 
are mainly open biomedical bibliographic databases (e.g., 
PubMed) and open-access repositories (e.g., PubMed 
Central) [3, 21]. These resources provide a significant 
subset of peer-reviewed medical knowledge and can be 
consequently used to classify biomedical relations with 
a higher accuracy [30]. In this research work, we con-
tinue this trend by developing a matrix-based approach 
for biomedical relation classification based on the MeSH 
Keywords of PubMed scholarly publications.

Prior works on biomedical relation classification using 
PubMed
In recent years, biomedical relation classification has 
become a critical aspect of extracting meaningful 
insights from the growing volume of biomedical litera-
ture available in sources such as PubMed. This review 
explores several key papers that contribute to the field, 
covering a range of methods and applications. Ali-
mova et  al. (2022) [31] address the need for evaluat-
ing biomedical relation extraction models on diverse 
corpora with different entities and relation types. The 
study compares the performance of BioBERT and 
LSTM models on four benchmark datasets, includ-
ing PHAEDRA, i2b2/VA, BC5CDR, and MADE cor-
pora. Notably, their cross-attention LSTM model 
demonstrates improved cross-domain performance, 
highlighting the importance of considering diverse 
domains in biomedical relation classification [31]. Par-
wez et  al. (2023) [32] focus on leveraging neural net-
work-based classification models to extract knowledge 
from the increasing volume of biomedical texts avail-
able in PubMed. The paper introduces an approach to 
capture both distributional and relational contexts of 
words to enhance word representation. The proposed 
method outperforms the GloVe model and exhibits 
improved accuracy in text classification using learned 
word representations [32]. Sosa et al. (2023) [33] intro-
duce a novel classification task to associate biological 
context, such as cell type or tissue information, with 
protein-protein interactions extracted from text. The 
study employs syntactic, semantic, and meta-discourse 
features and introduces the Insider corpora for train-
ing classifiers. More specifically, the paper focuses on 

associating specific biological contexts, such as cell 
types and tissue information, with protein-protein 
interactions (PPIs) and gene regulatory interactions. 
This is achieved by employing a feature-based classi-
fier that analyzes the vast PubMed database to link bio-
medical context mentioned in the text with extracted 
PPIs. The paper demonstrates high performance in 
associating biological contexts with relations. This 
is a significant advancement, as it allows for a more 
nuanced understanding of the interactions within bio-
medical knowledge graphs. By providing context, the 
study’s approach enhances the potential applications 
of these graphs in various areas of biomedical research 
and drug discovery. One of the notable aspects of this 
research is its practical application. The paper includes 
a case study on dengue fever, showcasing how the 
methodology can be used to enrich knowledge bases 
in specific research areas. This case study illustrates 
the potential impact of the approach on drug discov-
ery and pharmacological inference, highlighting its 
relevance to current biomedical challenges. In sum-
mary, this paper presents a groundbreaking approach 
to text mining at a scale previously unattainable, pro-
viding a method to associate biological contexts with 
protein-protein interactions in a way that enriches and 
enhances the utility of biomedical knowledge graphs. 
This advancement holds significant promise for vari-
ous applications in biomedical research, drug discov-
ery, and beyond.

As shown, prior works on biomedical relation classi-
fication using PubMed have mainly been based on the 
processing of the abstracts of scholarly publications 
using machine learning, language models, and semantic 
annotation. The use of the MeSH keywords in knowl-
edge engineering was mostly restricted to the retrieval 
of unclassified biomedical relations using the analysis 
of co-occurrence and citation links in PubMed [34] and 
the use of weakly-supervised deep learning techniques 
to adjust or augment MeSH indexing [35].

Methodology
As shown in Fig.  2, we start with the creation of the 
MeSH2Matrix dataset using our novel principle of the 
matrix of correspondence. Then, we explore leverag-
ing the MeSH2Matrix dataset for biomedical relation 
classification. For this, we focus on machine learning-
based methods (particularly neural networks) and train 
selected models on the MeSH2Matrix dataset. Finally, 
we perform extensive feature analysis of the trained 
neural networks to better understand the efficacy of the 
representations encoded in the MeSH2Matrix in clas-
sifying biomedical relation types.
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MeSH2Matrix
In this section, we cover the underlying principle of the 
MeSH2Matrix dataset creation as well as the practical 
workflow employed.

Matrix of correspondence
We develop our approach upon the assumption that the 
qualifiers of two co-occurring MeSH terms can outline 
the type of semantic relation between them, as shown in 
the examples in Table 1 [4, 8]. Let t1 and t2 be two seman-
tically related MeSH terms that are not assigned a relation 
type. Our method proposes to first search for the Pub-
Med scholarly publications having both t1 and t2 as MeSH 
headings. Then for each retrieved record, we extract its 
qualifiers q1 and q2 (e.g., therapeutic use for Sofosbuvir/
therapeutic use) respectively corresponding to t1 and t2 
(e.g., Sofosbuvir for Sofosbuvir/therapeutic use). This will 
enable the creation of ( q1 , q2 ) pairs as shown in Fig.  3. 
When a term is assigned two or more qualifiers (e.g., t2
/Z/U for Paper 3 - Fig. 3), this means that a paper deals 
with a facet of a characteristic of the considered topic. In 
such a situation, we consider it as though the qualifiers 
were independently assigned to the MeSH term for the 
paper (e.g., t2/Z and t2/U for Paper 3 - Fig. 3). We restrict 
the number of considered publications to the 100 most 
relevant research papers according to PubMed Best Match 
search algorithm [36]. This will prevent matters related 
to the timeout limit of the NCBI PubMed API (Error 

429). After the couples of MeSH qualifiers are retrieved, 
we draw a matrix of correspondence ( M(t1, t2) ) – this is 
a square matrix of the qualifiers ( q1, ..., q89)8 where each 
element mi,j is the number of records featuring both t1/qi 
and t2/qj as MeSH keywords divided by the total number 
of records with the two MeSH terms t1 and t2:

This matrix of correspondence encodes the nature 
of the semantic relation between t1 and t2 . As a practi-
cal example, as of March 6, 2022, there are 32 PubMed 
records where Hepatitis C and Sofosbuvir are featured 
together as MeSH headings. From these 32 publications, 
there are 15 papers where drug therapy and therapeutic 
use are the respective qualifiers to Hepatitis C and Sofos-
buvir. In this situation, the value that will be represented 
for the association between drug therapy and therapeutic 
use in the Hepatitis C-Sofosbuvir matrix is 15/32 = 0.469.

Building MeSH2Matrix with the matrix of correspondence
Here we describe the concrete workflow through 
which we create our MeSH2Matrix dataset. The first 
step involves extracting biomedical relations from 

(1)mi,j =
N (t1/qi, t2/qj)

N (t1, t2)
,mi,j ∈ [0, 1].

Fig. 2  Illustration of our methodology. We begin by generating the MeSH2Matrix dataset through our innovative concept of the correspondence 
matrix. Next we leverage machine learning approaches, particularly neural networks, for the task of biomedical relation classsification using 
MeSH2Matrix. Lastly, we conduct feature analysis to gain deeper insights into MeSH2Matrix-based classification

8  There are currently 89 pre-defined MeSH qualifiers (76 unique qualifiers 
and 13 unintentionally repeated ones) as revealed at https://​www.​nlm.​nih.​
gov/​mesh/​subhi​erarc​hy.​html.

https://www.nlm.nih.gov/mesh/subhierarchy.html
https://www.nlm.nih.gov/mesh/subhierarchy.html
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Wikidata with the help of our SPARQL query featured 
in Figure D6. This is done through identifying all items 
in Wikidata with a MeSH Descriptor ID (wdt:P486), 
storing these in the %item named result set. For each 
of these items, the query finds any relationships they 
have with other items. It ensures that these related 
items also have a MeSH Descriptor ID (wdt:P486), 
storing the identifier value in ?object. The query then 
returns the MeSH ID of the original item (?subject), 
the Wikidata property corresponding to the type of 
relationship (?reltype), and the MeSH ID of the related 
item (?object). The result of this extraction is a set 
BR := {(si, ri, oi)}

N
i=1

 of N tuples (si, ri, oi) where si is a 
subject term, oi is an object term and ri represents their 
relation type. The output ( BR ) of the query is saved 
as a tab-separated values (TSV) file to allow its auto-
matic processing. Recall that the underlying idea of 
our MeSH2Matrix dataset is the matrix of correspond-
ence M(si, oi) which encodes useful relationships of the 
subject-object association (using only the qualifiers of 
si and oi ). To obtain the matrix M(si, oi) for a given sub-
ject term si and object term oi we get their respective 
qualifiers from PubMed using the NCBI Entrez API. 
Each term is described in PubMed by a qualifier giving 
rise to a qualifier couple ( qa, qb ) where qa is the quali-
fier assigned to the subject si and qb is the qualifier 
assigned to the object oi . However, a term association 
can have many couples of MeSH qualifiers. Based on 

this, we obtain our matrix of correspondence M(si, oi) 
through all the extracted qualifier couples respectively 
for the subject si and object term oi . Each matrix is 
subsequently assigned the relation type ri correspond-
ing to the subject-object association as a label.

For a better analysis of our proposed approach, we 
extract the features of the considered Wikidata relation 
types and verify their names as well as if they are taxo-
nomic, symmetric, or biomedical through the application 
of SPARQL queries on Wikidata using Wikibase Integra-
tor coupled with human validation.

Biomedical relation classification with machine learning
This section covers our approach to exploring biomedi-
cal relation classification with machine learning. It is 
important to note that our objective here is to demon-
strate the efficacy of machine learning methods, par-
ticularly neural networks, and not to obtain the optimal 
machine learning technique for our task. As a result, 
this research does not consider many other machine-
learning approaches.

Machine learning models explored
Machine learning-based approaches handle biomedical 
relation classification as a supervised learning classifica-
tion task, where labeled data is used to train models. In 
this paper, we provide benchmark results on our dataset, 
using three machine learning models:

Fig. 3  Process for the retrieval of the couples of MeSH qualifiers. t1 is the subject MeSH term, t2 is the object MeSH term, q1 are the subject qualifiers, 
q2 are the object qualifiers, and c is the set of the couples of the extracted MeSH qualifiers
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SVM:  Support vector machines (SVMs)  [37] are best 
suited for samples with many features because their abil-
ity to learn is independent of the features space [38]. They 
have been used exensively in biomedical classification 
tasks [39–42] due to their ability to generalize well with 
data consisting of sparse high-dimensional features. For 
our baseline, we trained a linear support vector machine. 
For this, we transformed each 89× 89 matrix into a sin-
gle 7921 feature vector.

D‑Model:  Neural networks (NNs) have produced 
state-of-the-art results in the area of relation clas-
sification  [27, 42–44]. The major advantage of neu-
ral network based approaches lies in thier ability to 
directly learn the latent feature representation from 
the labeled training data without requiring experts to 
carefully craft them [3]. For our experiments with neu-
ral networks, we designed D-Model, a simple multi-
layer perceptron with an input layer of output feature 
size of 3,  960, a hidden layer of 1,  980 and an output 
layer with an output feature size corresponding to the 
number of classes [rationale for the choice of the size 
of neurons: 1). we tested different sizes and this gave 
the best result, and 2). we followed [45–47] in keep-
ing the hidden layer size between input layer size and 
output layer size]. ReLU activation function  [48] was 
used between the input and hidden layers to introduce 
non-linearity. The output layer is connected to a soft-
max activation function which converts the model’s 
output into a probability over the classes. Although 
NNs have shown great promise for relation classifica-
tion, they are highly susceptible to overfitting [49] and 
require lots of hyperparameter tuning. Therefore, we 
experimented with regularization techniques (early 
stopping and dropout) the hyperparameters (learning 

rate, batch size, etc) in order to produce the best per-
forming D-Model.

C‑Net:  Convolutional neural networks (CNNs) are a 
type of neural networks that can successfully capture 
the spatial and temporal dependencies in an image 
through the application of convolution operation and 
relevant filters. Their potential was first witnessed in 
computer vision around 2012 [50], and since then have 
been used extensively even in biomedical relation clas-
sification [44, 51, 52]. CNNs perform well on an image 
dataset better due to the reduction in the number of 
parameters involved and reusability of their weights 
- they are therefore best suited for image-type data. 
Furthermore, with CNNs we can work directly with 
the 2-dimensional matrix (compared to transform-
ing it for SVM and D-Model). To explore the impact 
of CNNs on MeSH2Matrix, we decided to interpret 
our feature matrix as spatially correlated features and 
designed C-Net, a simple CNN-based architecture 
made up of four convolution layers (each layer con-
sisting of a 2-dimensional convolution, batch nor-
malization  [53], a ReLU activation function  [48] and 
max-pooling) and two fully connected layers (Fig.  4). 
After passing through the fully connected layers, the 
final layer uses the softmax activation function which 
is used to get probabilities of the input matrix being 
in a particular class. CNN-based models, while being 
very promising, require practical knowledge to con-
figure the model architecture with regard to the per-
formance [54], and to set the hyperparameters for the 
best optimization [55]. Similarly, we conducted hyper-
parameter tuning and optimization in order to explore 
the reasonable ranges for the sensitive hyperparame-
ters of the classification model.

Fig. 4  CNN-based architecture for the classification of the MeSH qualifier-based matrices
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Experimental setup
We performed two rounds of classification: one with 
all relation types (195), and another with 5 categories 
obtained after grouping the initial 195 relation types (see 
“MeSH2Matrix dataset” section for more details on group-
ing). Then, we apply three scenarios of classification to the 
best-performing model according to the first two rounds 
to study the effect of various factors on the efficiency of 
biomedical relation classification based on MeSH2Matrix:

•	 Scenario 1: Restriction to the matrices based on 100 
scholarly publications or more (Blue in Fig. 5)

•	 Scenario 2: Restriction to the well-represented rela-
tion types (10+ matrices)

•	 Scenario 3: Restricted generalization to a unique 
superclass at once [56]

We split our dataset into training (33,  457 samples), 
validation (13, 012 samples) - for early stopping, regulari-
zation and hyperparameter tuning - and testing (9,  294 
samples) - for the final evaluation of the model. For SVM 
training, we merged the training and validation set, mak-
ing a total of 46, 469 samples for training. For the training 
of D-Model and C-Net, we used the Adam optimizer [57]. 
The code for all our deep learning experiments was writ-
ten using the PyTorch deep learning framework  [58], 
while for SVM we implemented the training using the 
Linea​rSVC packa​ge.

Evaluation metrics
To assess the efficiency of the three proposed models, we 
will be based on four basic measures providing insights 
on the behavior of classification algorithms [59]:

•	 True Positives (TP): the number of items correctly 
assigned to their respective classes

•	 True Negatives (TN): the number of items correctly 
not assigned to unrelated classes

•	 False Positives (FP): the number of items mistakenly 
assigned to unrelated classes

•	 False Negatives (FN): the number of items mistakenly 
not assigned to their respective classes.

 These measures are combined together to provide two 
main statistical metrics to be used in our study: Accuracy, 
and F1-Score [59]. Accuracy is defined as the ratio of the 
number of correct predictions out of the overall number 
of predictions as clearly revealed in Eq. 2 [59]:

The F1-Score combines Precision (  TP
TP+FP ) and Recall 

(  TP
TP+FN  ) in the following way:

As sample size per class as well as class imbalance alter 
the values of the Accuracy and the F1-Score [60], we addi-
tionally consider three metrics that evaluate these two 
factors for every scenario: Arithmetic Mean, Geometric 
Mean, and GA-Ratio [61]. Let xi be the size of the class i 
and N be the number of classes, the arithmetic mean and 
geometric mean are defined as:

(2)Accuracy =
TP + TN

TP + TN + FP + FN

(3)F1 =
2 ∗ (Recall ∗ Precision)

Recall + Precision

(4)ArithmeticMean =
1

N

N

i=1

xi

Fig. 5  Top twenty relation types according to the number of generated matrices: Number of generated matrices (Orange), Number of matrices 
based on 100+ scholarly publications (Blue)

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
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These measures have been shown to efficiently evalu-
ate the sample size per class [61]. The Arithmetic Mean 
diverges from the Geometric Mean when the class distri-
bution is even [61]. This allows us to consider the com-
plexity of the classification tasks allowing us to judge 
whether the comparison between different situations of 
classification is reasonable or not. In this context, the 
GA-Ratio is the ratio of the arithmetic mean of the size 
of classes over the geometric means of the size of classes 
as shown in Eq. 6. It is an efficient metric to evaluate the 
class distribution of a dataset. As a result of the inequal-
ity of arithmetic and geometric means, GA-Ratio always 
ranges between 0 and 1 where 1 corresponds to an equal 
class distribution and 0 corresponds to an absolute class 
imbalance [61]. Here, the Geometric Mean cannot have 
a value of 0 because every class should at least have one 
item to exist:

To confirm whether the scenario-based evaluation 
results for the best-performing model apply to the two 
other models (SVM and C-Net), we generate confu-
sion matrices for the MeSH2Matrix-driven training of 
the three machine learning algorithms based on the five 
superclasses. A confusion matrix is a table that records 
the associations between the expected classification 
classes and the predicted ones. Throughout this paper, 
rows stand for true labels and columns stand for pre-
dicted labels. The classes are sorted in the same order 
in rows and columns for all the generated confusion 
matrices. As a result, the accurately classified items are 
featured on the main diagonal line from the top left and 
bottom right [59].

Feature analysis
Although machine learning models have gained wide-
spread adoption in recent times, several reservations 
still exist about how these models could be used and 
the level of trust that should be granted to these mod-
els. These reservations do exist because of the black-
box nature of these models and this has limited the 
level of machine-learning model adoption, especially 
in the medical domain. In their work, [62] demonstrate 
an opposing non-linear relation that exists between 
the explainability of a model and the complexity of 
the model; as a model is trained on a larger amount 
of data, the complexity of the model increases and the 

(5)GeometricMean =
N

√

√

√

√

N
∏

i=1

xi

(6)GA =
GeometricMean

ArithmeticMean

ease of explainability reduces. To make the output of a 
machine learning model more acceptable in the medi-
cal AI domain, more human-based reseasoning needs 
to be applied [63] in the form of explainability. To 
enhance the adoption of deep learning models in the 
medical AI domain, [62] recommended the use of vari-
ous explainable AI (XAI) techniques hence, the addi-
tion of feature analysis and explainability section to 
this work.

Understanding the predictions of a model using 
XAI techniques can be broadly categorized into two 
classes: model-agnostic techniques and model-specific 
techniques, of which the more popular are the model-
agnostic techniques [64]. Due to the nature of our data-
set, model-specific feature permutation and ablation 
have been the simplest strategies for evaluating the fea-
ture significance in our models [64]. However, results 
have shown that the robustness of these techniques is 
very limited [65]. In addition, although techniques like 
Shapley Additive Explanations (SHAP) [66] and Local 
Interpretable Model-agnostic Explanations (LIME) [67] 
have been seen to be the most widely adopted tech-
nique for model explainability, [68] showed that they 
are less robust and highly prone to adversarial attacks. 
A more flexible gradient-based technique known as 
Integrated Gradients (IG) was proposed by [69] and 
reported to be more robust than earlier mentioned 
techniques [70], hence our choice for the use of Inte-
grated Gradients as the XAI technique for this work. 
It is important to note that using the integrated gradi-
ents technique for feature importance attribution has 
its limitations, one of which being that the function 
learned by the model may be “over-influenced” by just 
one of the features [71].

Computing the integrated gradients (IG) [69] of neural 
networks with respect to the input features is a technique 
that addresses the problem of feature attribution by using 
a gradient-based approach to satisfy two fundamental 
axioms: Sensitivity and Implementation Invariance 
that should be satisfied.

Sensitivity here implies that a non-zero feature attri-
bution value should be assigned to a feature if it is the 
only feature differing between a baseline input and 
input data sample with different predictions. On the 
other hand, Implementation Invariance implies that 
two neural networks with different architectures are 
functionally equal if they have equal outputs for each 
input data sample.

The relevance of integrated gradients, over other 
techniques, for the explainability of neural networks as 
highlighted by [69] includes the fact that the use of IG 
does not require any modification to the original neu-
ral network. It can also be used to extract rules from 
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the model and as a tool for debugging deep learning 
models [69].

Integrated Gradients can be mathematically repre-
sented as:

Where xi and x′i are the is the input data sample and 
the baseline input along the ith dimension. In order 
to understand how each feature in our training data-
set contributes to the overall decision-making of our 
model, we employed integrated gradient as an XAI 
technique to explain our best two performing mod-
els, D-Model and C-Net at the superclass level. Using 
IG for this helps us to be able to equally compare a 
CNN model to an ANN model as opposed to other 
techniques that would only see a CNN model input 
to be an image, which is not the case for our dataset. 
The limitation in the robustness of the permutation 
explainer in SHAP to not being able to handle datasets 
with a feature size greater than 225 also informed our 
choice of integrated gradients.

To compute the integrated gradient for the D-Model we 
set x′i to be a zero-vector with the same shape as xi and 
δF  was computed at little intervals through moving from 
xi (non-zeros) to x′i (zeros) and then adding the value of 
F multiplied by the interval size. The computation was 
done for 8080 test samples and the results are shown 
throughout “Insights from feature analyses”  section 

IntegratedGradienti(x) : :=(xi − x′i)×

∫ 1

0

∂F(x′ + α × (x − x′))

∂xi
dα

(Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and Sup-
plementary Figures  S1 to S10). This same computation 
was done for the C-Net model, however, x′i was set to a 
zero-vector of 89 x 89 shape to simulate the image-like 

input of a CNN model. 89 x 89 represents the dimensions 
of the MeSH2Matrix matrices, as we considered 89 pre-
defined MeSH qualifiers in this work.

Human subjects research statement
No human subjects were involved in this analysis. 
The work involved data collected from publicly avail-
able datasets. In the next sections, we delve into an 
extensive examination of the resulting MeSH2Matrix 
dataset (“MeSH2Matrix dataset”  section). In “Experi-
mental results on biomedical relation classification 
using MeSH2Matrix” section, we describe our models, 
our related experiments, and corresponding results. 
Finally, in “Insights from feature analyses” section, we 
provide an in-depth analysis of our experiments and 
results.

MeSH2Matrix dataset
As of December 12, 2021, our SPARQL query (Figure D6) 
has successfully retrieved 81,000 biomedical relations 
between MeSH Terms from Wikidata. This is a very sig-
nificant amount of information as Wikidata only includes 

Fig. 6  Scatterplot of mean integrated gradients for the 7,921 features
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99,208 semantic relations between MeSH concepts9. We 
have chosen 81,000 as the number of considered relations 
in order to simplify the performed computations for the 
analysis of our proposed approach. When analyzing the 
biomedical relations extracted for building our dataset, 
we found out that the supported relation types can be 
classified into five categories:

•	 Non-Biomedical Non-Symmetric (156 relation types, 
17,758 relations),

•	 Biomedical Non-Symmetric (53 relation types, 27,429 
relations),

•	 Non-Biomedical Symmetric (12 relation types, 9,000 
relations),

•	 Biomedical Symmetric (3 relation types, 1,441 rela-
tions), and

•	 Taxonomic (3 relation types, 25,372 relations).

This goes in line with the coverage of various aspects of 
biomedical knowledge in Wikidata as a multidisciplinary 
knowledge graph [9, 19]. The extraction of the associations 
between the subject and object of every semantic rela-
tion in the MeSH keywords of PubMed publications has 
shown that most of the associations are likely to be found 
in a limited number of publications (Fig.  19A) and that 
commonly available MeSH associations in the PubMed 
records are rare (25,227 associations [42.7%] each avail-
able in 100 papers or more - Green dot in Fig. 19A). This 
is evident as scientific productivity follows Lotka’s Law, an 
inverse power law that describes the uneven distribution 

Fig. 7  Distribution of integrated gradients of 10 most impactful features: 1666 (diagnosis; therapeutic use), 3420 (pharmacology; pharmacology), 
4505 (metabolism; enzymology), 4528 (metabolism; drug effects), 5400 (epidemiology; epidemiology), 5490 (ethnology; ethnology), 5766 
(therapeutic use; drug therapy), 5855 (administration & dosage; drug therapy), 6294 (drug therapy; therapeutic use), and 6295 (drug therapy; 
administration & dosage)

Fig. 8  Label-based segmentation of the ten most influential features: Taxonomic (0), biomedical symmetric (1), non-biomedical symmetric (2), 
biomedical non-symmetric (3), and non-biomedical non-symmetric (4)

9  For a live update: https://w.​wiki/​4JN9.

https://w.wiki/4JN9
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of research outputs [72]. When seeing if the extraction of 
qualifiers describing the MeSH associations has been suc-
cessful in generating matrices, we found that the probabil-
ity of the creation of qualifiers’ matrices tends to increase 
with the augmentation of the number of PubMed publi-
cations including the MeSH association before reaching a 
plateau near 1 at twenty publications (Fig. 19B). The exist-
ence of biomedical relations in Wikidata that cannot be 
found in PubMed records and that do not consequently 

return matrices of correspondence could be explained by 
the fact that Wikidata is subject to include irrelevant bio-
medical relations as it is collaboratively edited by human 
users without any restriction [20]. By contrast, it is impor-
tant to reveal that the proportion of the generation of the 
matrices for the MeSH associations available in 100 pub-
lications or more is below the plateau with a rate of 73.3% 
(Red dots in Fig. 19B). To identify the reason behind such 
an unexpected behavior, we compute the quotient of the 

Fig. 9  Distribution of 10 most impactful features for label 0 [taxonomic] (D-model): 0 (analysis; analysis), 1086 (pathology; diagnosis), 1620 
(diagnosis; diagnosis), 1800 (etiology; etiology), 1980 (complications; complications), 4500 (metabolism; metabolism), 4590 (biosynthesis; 
biosynthesis), 6120 (therapy; therapy), 6300 (drug therapy; drug therapy), and 7560 (methods; methods)

Fig. 10  Distribution of 10 most impactful features for label 0 [taxonomic] (C-Net): 1170 (chemistry; chemistry), 1620 (diagnosis; diagnosis), 1710 
(diagnostic imaging; diagnostic imaging), 1800 (etiology; etiology), 2340-2361-4209 (genetics; genetics), 4476 (metabolism; genetics), 5220 
(physiopathology; physiopathology), 5400 (epidemiology; epidemiology)
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MeSH associations not generating matrices and available 
at least in 100 PubMed papers out of the overall number of 
the MeSH associations not having qualifiers’ matrices for 
every class of Wikidata relation types. We found out that 
this rate is significantly higher for taxonomic (6,133 out of 
13,411, 45.7%) and non-biomedical non-symmetric (1,712 
out of 8,335, 20.5%) relations than for biomedical non-sym-
metric (1,137 out of 9,498, 12.0%), non-biomedical sym-
metric (189 out of 2,647, 7.1%), and biomedical symmetric 

(7 out of 640, 1.1%). This proves the ability of the MeSH 
qualifiers to better represent biomedical or symmetric 
relations than generic and non-symmetric ones.

The obtained dataset of qualifiers’ matrices represented 
46,469 relations covering the five classes of semantic rela-
tion types (195 supported relation types, 54.2% of the matri-
ces based on 100 publications or more): 17,931 biomedical 
non-symmetric, 11,961 taxonomic, 9,423 non-biomedical 
non-symmetric, 6,353 non-biomedical symmetric, and 

Fig. 11  Distribution of 10 most impactful features for label 1 [biomedical symmetric] (D-model): 127 (blood; pharmacology), 1710 (diagnostic 
imaging; diagnostic imaging), 3397 (pharmacology; analogs & derivatives), 3420 (pharmacology; pharmacology), 3600-3626-5914-5940 (adverse 
effects; adverse effects), 5760 (therapeutic use; therapeutic use) and 6750 (surgery; surgery)

Fig. 12  Distribution of 10 most impactful features for label 1 [biomedical symmetric] (C-Net): 1373 (analogs & derivatives; pharmacology), 1710 
(diagnostic imaging; diagnostic imaging), 2340 (genetics; genetics), 3420 (pharmacology; pharmacology), 3438 (pharmacology; pharmacokinetics), 
3600-3626 (adverse effects; adverse effects), 4680 (blood; blood), 5760 (therapeutic use; therapeutic use), and 6694 (surgery; diagnostic imaging)
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801 biomedical symmetric relations. Unsurprisingly, the 
most represented relation types in the dataset are mainly 
taxonomic (e.g., subclass of [P279] and instance of [P31]) 
or biomedical non-symmetric ones (e.g., drug and therapy 
used for treatment [P2176] and symptoms and signs [P780]) 
as shown in Fig.  5. A surprising fact is that non-biomedi-
cal non-symmetric relations are dominated by diplomatic 

relation [P530] (4,000 out of 9,423 matrices, 42.4%) and 
subject has role [P2868] (3,309 out of 9,423 matrices, 
35.1%). The distribution of matrices per relation types fol-
lows Lotka’s law where a limited number of relation types 
are attributed a considerable number of matrices. Despite 
this class imbalance, we have an interesting number of 
well-represented relation types that can enable biomedical 

Fig. 13  Distribution of 10 most impactful features for label 2 [non-biomedical symmetric] (D-model): 1284 (agonists; pharmacology), 1620 
(diagnosis; diagnosis), 3408-3429 (pharmacology; genetics), 3432 (pharmacology; metabolism), 3865 (agonists; pharmacology), 5400 (epidemiology; 
epidemiology), 5401 (epidemiology; ethnology), 5489 (ethnology; epidemiology), and 5490 (ethnology; ethnology)

Fig. 14  Distribution of 10 most impactful features for label 2 [non-biomedical symmetric] (C-Net): 1170 (chemistry; chemistry), 3408 (pharmacology; 
genetics), 4209 (genetics; genetics), 4476 (metabolism; genetics), 4488 (metabolism; pharmacology), 4500 (metabolism; metabolism), 5400 
(epidemiology; epidemiology), 5401 (epidemiology; ethnology), 5850 (administration & dosage; administration & dosage), and 5914 (adverse 
effects; adverse effects)
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relation classification with high accuracy. This is confirmed 
even when we only consider the matrices that were based 
on 100+ scholarly publications as shown in Blue in Fig. 6. 
This makes our dataset more inclusive than other available 
corpora for biomedical relation classification only cover-
ing a few relation types, particularly drug interactions, drug 
adverse effects, and drug-disease relations [3].

Experimental results on biomedical relation 
classification using MeSH2Matrix
Table 2 shows the results of the three benchmark mod-
els on the 195-classification and 5-classification tasks. We 
refer the reader to “Experimental setup”  section for the 
experimental setup. The metric being used are accuracy 
and multi-class F1-score (which is a metric that combines 

Fig. 15  Distribution of 10 most impactful features for label 3 [biomedical non-symmetric] (D-model): 1405 (analogs & derivatives; drug therapy), 
1666 (diagnosis; therapeutic use), 2392-4261 (genetics; drug effects), 4505 (metabolism; enzymology), 4528 (metabolism; drug effects), 5766 
(therapeutic use; drug therapy), 5855 (administration & dosage; drug therapy), 6294 (drug therapy; therapeutic use), and 6295 (drug therapy; 
administration & dosage)

Fig. 16  Distribution of 10 most impactful features for label 3 [biomedical non-symmetric] (C-Net): 1978 (complications; etiology), 2361 (genetics; 
genetics), 2392 (genetics; drug effects), 4476 (metabolism; genetics), 4496 (metabolism; physiology), 4500 (metabolism; metabolism), 4505 
(metabolism; enzymology), 5718 (therapeutic use; complications), 5766 (therapeutic use; drug therapy), and 5855 (administration & dosage; drug 
therapy)
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the precision and recall of the model). It is clear that the 
three proposed models achieved acceptable accuracy 
measures that go in line with the recent advances in bio-
medical relation classification (F1-Score between 0.65 
and 0.85) [3].

We see a notable improvement in the probabilis-
tic methods (D-Model and C-Net) over SVM. D-Model 

performs the best, although outperforming C-Net by 
a small margin. Another observation is that for all the 
models, their performance on the 5-class takes was much 
better than the 195-class ones. This could be because the 
consideration of five generalized superclasses actually 
reduces the complexity of the task, making it easier for 
the model to learn [56]. For example, class generalization 

Fig. 17  Distribution of 10 most impactful features for label 4 [non-biomedical non-symmetric] (D-model): 1157 (chemistry; analysis), 1170 (chemistry; 
chemistry), 1373 (analogs & derivatives; pharmacology), 3420 (pharmacology; pharmacology), 3432 (pharmacology; metabolism), 3788 (toxicity; 
metabolism), 5400 (epidemiology; epidemiology), 5760 (therapeutic use; therapeutic use), 5849 (administration & dosage; therapeutic use), 
and 5850 (administration & dosage; administration & dosage)

Fig. 18  Distribution of 10 most impactful features for label 4 [non-biomedical non-symmetric] (C-Net): 2340-2361 (genetics; genetics), 2430-2452 
(immunology; immunology), 3420 (pharmacology; pharmacology), 3432 (pharmacology; metabolism), 3600-5914 (adverse effects; adverse effects), 
4463 (metabolism; chemistry), and 5761 (therapeutic use; administration & dosage)



Page 18 of 28Turki et al. Journal of Biomedical Semantics           (2024) 15:18 

allowed us to be get rid of the closely related taxonomic 
relation types (i.e., instance of [P31], subclass of [P279], 
and part of [P361]) and eliminate the effect of the con-
fusion between these three relation types on the accu-
racy of the models. Another possible reason could be 
that grouping increased the distribution of some minor-
ity classes (classes with a very few samples). On the 
one hand, due to the enrichment of Wikidata thanks 
to human efforts, important Wikidata statements can 
be mistakenly defined for minor relation types [9]. The 
effect of such deficient relations will become insignifi-
cant when the generalization occurs. On the other hand, 
as of December 12, 2021, 4,522 (4.4%) out of the 99,208 
Wikidata relations between MeSH Terms are having the 
same subject and object as another supported semantic 
relations between MeSH Concepts10. Statements having 
the same subjects and objects but different relation types 
are likely to be merged together due to the class generali-
zation, allowing to reduce the confusion between slightly 
overlapping relation types.

Despite the importance of these results, the adjustment 
of MeSH2Matrix for applying various scenarios of clas-
sification (“Experimental results on biomedical relation 
classification using MeSH2Matrix” section) to D-Model, 
the best performing machine-learning model, can allow 
a better explanation of the behavior of MeSH2Matrix-
based biomedical relation classification. The elimination 
of uncommon semantic relations in PubMed (Scenario 1) 
and of under-represented relation types in MeSH2Matrix 
(Scenario 2) did not affect the class distribution of train-
ing sets as adjusted datasets share the same order of mag-
nitude for Arithmetic Mean and GA-Ratio as the original 
MeSH2Matrix dataset as shown in Table 3. The relation 
type-based classification for Scenario 2 associated with 
an increase of Arithmetic Mean and GA-Ratio and the 
superclass-based classification for Scenario 1 coupled 
with a decline of Arithmetic Mean and GA-Ratio will 
only matter when accuracy rates significantly lessen for 
Scenario 1 and improve for Scenario 2. These two scenar-
ios will be important to study the effect of label noise [73] 
and relation occurrence [8] on the efficiency of the clas-
sification and consequently to evaluate the robustness of 
our approach.

The proposed situations for the restricted generali-
zation of the relation types included in one superclass 
(Scenario 3) seem to be comparable as the arithmetic 
mean of the number of matrices per relation type ranges 
between 240.77 and 318.28 and the GA-Ratio varies 
between 0.033 and 0.054 for all the iterations except 
the merge of non-biomedical non-symmetric relation 
types (Table 3). Even for the latter, the excess of the rate 
of items per class (Matrices per class: 693.56) and the 

Table 2  Accuracy [and F1-Score] (in percentage) of the models 
used in our experiments. In both classes, D-Model performs best, 
followed by C-Net and lastly SVM. Also, all models performed 
better on 5 classes compared to 195 classes

Models 195 classes 5 classes

SVM 66.43 [61.27] 78.74 [78.63]

D-Model 70.78 [66.90] 83.09 [82.94]

C-Net 70.49 [66.18] 82.78 [82.61]

Fig. 19  Analysis of MeSH Keyword Associations and Qualifier Matrices in PubMed Publications. 19A: The distribution of the associations 
between subjects and objects in semantic relations derived from MeSH keywords in PubMed publications. The majority of these associations 
are concentrated in a limited number of publications. A small fraction (42.7%) of associations are present in 100 or more publications (indicated 
by the green dot). 19B: The probability of successful creation of qualifier matrices increases with the number of PubMed publications containing 
the MeSH association, reaching a plateau near 1 at around twenty publications. However, for associations available in 100 or more publications, 
the generation rate of these matrices remains below the plateau at 73.3% (indicated by the red dots)

10  Live data: https://w.​wiki/​4itd.

https://w.wiki/4itd
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decrease of class imbalance (GA-Ratio: 0.069) are not 
very significant and can be carefully considered as close 
to the ones of other situations. The comparison between 
situations where different classes are merged will allow 
discerning how confusion between relation types occurs 
for MeSH2Matrix [56].

When assessing the effect of Scenario 1 and Scenario 
2 on the MeSH2Matrix-based classification of semantic 
relations (Fig.  20), it is clear that the removal of minor 
relation types did not positively affect the classification 
efficacy as the Accuracy and F1-Score remained quite 
the same despite an increase in Arithmetic mean and 
GA-Ratio. This proves the robustness of our approach 
to label noise and endorses that the consideration of a 
limited number of relation types is not the solution for 
having a better accuracy of the classification [73]. By 
contrast, the increase of the Accuracy and F1-Score of 

the classification when eliminating uncommon semantic 
relations co-occurring in less than 100 PubMed records 
confirms previous findings on the importance of number 
of associations between terms in scholarly publications 
for biomedical relation extraction and classification [8]. 
The lack of such an effect for superclass-based classifica-
tion shows the limitation of our algorithm to go beyond 
an accuracy of 84%. Significant improvements for the 
proposed machine-learning models should be applied to 
let the classification more reliable.

The evaluation of the effect of restricted generalization 
of relation types on the accuracy rates of the classification 
has revealed that this practice was only effective when the 
generalization concerned non-biomedical relation types 
and to a lesser extent non-symmetric ones (Fig. 21). The 
more significant lack of classification of non-biomedical 
relation types can be explained by the use of a database 

Table 3  Descriptive statistics for the situations to be considered for assessing the behavior of the best performing machine-learning 
model

Situation Classes Geometric mean Arithmetic mean GA-Ratio

All - Relation Types 195 13.08 238.30 0.054

All - Superclasses 5 6345.04 9293.80 0.683

Scenario 1 - Relation Types 178 10.19 141.72 0.072

Scenario 1 - Superclasses 5 2866.20 5045.40 0.568

Scenario 2 - Relation Types 95 80.09 486.00 0.165

Scenario 2 - Superclasses 5 6308.33 9234.00 0.683

Scenario 3 - Taxonomic 193 12.45 240.77 0.052

Scenario 3 - Biomedical Non-Symmetric 146 10.57 318.28 0.033

Scenario 3 - Biomedical Symmetric 193 12.89 240.77 0.054

Scenario 3 - Non-Biomedical Non-Symmetric 67 47.58 693.56 0.069

Scenario 3 - Non-Biomedical Symmetric 186 12.24 249.83 0.049

Fig. 20  Accuracy and F1-Score for the application of D-Model on Scenarios 1 and 2: Relation Types corresponds to the MeSH2Matrix classification 
according to 195 classses, Superclasses corresponds to the MeSH2Matrix classification according to 5 categories, and All stands for the original 
MeSH2Matrix 
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of biomedical scholarly publications for the creation of 
MeSH2Matrix. In fact, PubMed mostly involve biomedi-
cal knowledge and consequently provides limited infor-
mation on diplomatic relation [P530] and shares border 
with [P680] statements [13]. Exceptions to this are taxo-
nomic relation types. Such relations constitute the defini-
tion of concepts in a given knowledge resource [74] and 
they can be easily be found in scholarly publications, par-
ticularly literature reviews about biomedical entities [75]. 
As well, when a PubMed publication deals with a con-
cept and its parent class, it is more likely that the same 
features will be evocated for both entities in that paper, 
making the two related MeSH terms receive similar qual-
ifiers. This allows the generated matrix to have a sym-
metric shape that cannot be relevant for other semantic 
relation types. However, in practice, such an ability to 
classify taxonomic relations is rarely needed, particularly 
as Medical Subject Headings (MeSH) includes taxonomic 
relations for all the biomedical concepts it involves [76].

When generating the confusion matrices for the super-
class-based classification training of the three proposed 
models on MeSH2Matrix, we found out that the factors 
altering the classification accuracy are quite the same 
across the three algorithms as shown in Fig. 22 although 
the extent of their influence can significantly differ from 
a model to another. In fact, we identify that the con-
siderably limited proportion of biomedical symmetic 
relations considerably altered the efficiency of the classi-
fication for this particular superclass (Circles in Fig. 22). 
We also point out that there is a remarkable confusion 
between taxonomic (expected) and non-symmetric (pre-
dicted) relations (Hexagones in Fig.  22). This confusion 

also applies to non-symmetic (expected) and taxonomic 
(predicted) relations (Squares in Fig. 22) as well as to bio-
medical and non-biomedical non-symmetric relations 
(Triangles in Fig. 22). This kind of confusion is probably 
motivated by a similarity of patterns between taxonomic 
and non-symmetric relation types as all these relation 
types have domains and ranges that are not the same 
[77]. This finding partly confirm the relative ameliora-
tion of accuracy rates when generalizing non-symmetric 
relations (Fig.  20) and proves that an initial classifica-
tion of relations as symmetric and non-symmetric can 
significantly reduce the complexity of our classifica-
tion. Furthermore, we recognize a significant confusion 
between non-biomedical symmetric and non-biomed-
ical non-symmetric relations (Triangles in Fig.  22). This 
confirms the large positive effect of the generalization of 
non-biomedical relations on accuracy rates for D-Model 
(Fig. 20) and can be explained by the fact that the MeSH 
qualifiers initally used to create the matrices do not cap-
ture well non-biomedical semantic relations. This proves 
in part why MeSH2Matrix-based classification cannot 
achieve absolute accuracy even when using more efficient 
machine learning algorithms. Another finding that was 
not pinpointed through the class generalization experi-
ments is the existence of a bias in the prediction of the 
considered superclass as taxonomic (Squares in Fig. 22). 
This is mainly due to the very important proportions of 
taxonomic relations in the MeSH2Matrix dataset. This 
class imbalance seems to more interestingly alter the 
classification accuracy for classical machine learning 
models (SVM) than for neural networks (D-Model and 
slightly C-Net). The slight lack of influence of the other 

Fig. 21  Accuracy and F1-Score for the application of D-Model on Scenario 3: Labels reveal the generalized category of relation types for every 
situation
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confusions for SVM (Haxagones and Triangles in Fig. 22) 
is not significant and is mainly motivated by the large 
influence of the bias towards taxonomic relations. This 
bias significantly explains why SVM performed less than 
neural networks in our classification and prompts the 
reproduction of our experiments with a more balanced 
dataset or with a variant of SVM that is robust to class 
imbalance to more objectively compare classical machine 
learning models to advanced ones [78].

To further study how D-Model and C-Net perform, 
particularly in the context of biomedical symmetric and 
taxonomic relations, we provide a comparative analy-
sis of F1-Scores for various relation types using the two 
models (Table 4). The performance of the two models is 
generally similar, with minor differences in F1-Scores. 
However, certain relation types show clear advantages for 
one model over the other. D-Model outperforms C-Net 
in relation types such as diplomatic relation (P530), cell 
component (P681), has part (P527), and molecular func-
tion (P680). Conversely, C-Net has higher F1-Scores 
for instance of (P31), drug or therapy used for treatment 

(P2176), medical condition treated (P2175), and sig-
nificant drug interaction (P769). Both models perform 
exceptionally well on relations like medical condition 
treated (P2175) and drug or therapy used for treatment 
(P2176), with F1-Scores close to or above 0.9, indicat-
ing high accuracy. However, they struggle equally with 
shares border with (P47) and part of (P361), where scores 
are also relatively low. The choice between D-Model and 
C-Net may thus depend on the specific relation types of 
interest, particularly as several relation types included in 
the same superclass may behave differently. Despite this, 
analyzing superclass-based classification can be useful 
to discern nuanced differences in model performance 
across related but distinct relation types.

Insights from feature analyses
We set out to investigate how the mean integrated gradi-
ents were distributed across the 7, 921 features. Figure 6 
depicts a scatterplot of the average integrated gradi-
ents for each feature. This plot was noisy and not very 

Fig. 22  Confusion matrices for the superclass-based classification restricted to the MeSH2Matrix training set. Models: SVM (A), C-Net (B), 
and D-Model (C). Classes: Taxonomic (0), biomedical symmetric (1), non-biomedical symmetric (2), biomedical non-symmetric (3), and non-biomedical 
non-symmetric (4)
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informative. However, it shows that only a limited num-
ber of features are positively correlated to the classes. 
This proves that not all the MeSH qualifiers heavily influ-
ence the classification and that some of them can be elim-
inated without affecting the accuracy of the classification.

To get more informative analyses, we focused on 
the ten most impactful features (that is the 10 features 
with the largest positively correlated values). In order 
to understand how these 10 most impactful features 
behaved across the dataset, we made a violin plot of the 
distribution of the 10 most impactful features across 
the dataset – see Fig. 7. We found that the most repre-
sented relation types of the dataset such as subclass of, 
diplomatic relations, and instance of as well as other 
common non-biomedical relation types shown at Fig.  5 
are not represented by the ten most impactful features. 
By contrast, common biomedical relation types such as 
drug and therapy used for treatment and medical condi-
tion treated have several related features among the most 
impactful ones. An example can be 5766 (therapeutic 
use; drug therapy) that corresponds to medical condition 
treated.

In order to gain a better understanding of the distribu-
tion, we plotted the distribution of the 10 most influen-
tial features (features with the most positively correlated 
gradients) segmented by the dataset’s labels – see Fig. 8. 
Surprisingly, we observe that the most impactful features 

across the whole dataset (which we found from Fig.  7) 
seem to be mostly neutral for the classification of rela-
tions as taxonomic (label 0). This explains the lack of 
adaptation of the MeSH qualifiers to support non-bio-
medical relations including taxonomic ones.

Finally, for each of our target labels, we employ inte-
grated gradients (“Feature analysis”  section) to examine 
the influence of the ten most impactful features on the 
classification performance of our models. This analy-
sis aims to provide deeper insights into the behavior of 
D-Model and C-Net for each dataset label. Below, we dis-
cuss our findings from feature analysis for each label. For 
D-Model, refer to Figs. 9, 11, 13, 15 and 17, and for C-Net, 
see Figs. 10, 12, 14, 16 and 18.

Taxonomic (label 0)
Figures  9 and 10 show the 10 most impactful features 
used by D-Model and C-Net respectively to classify 
relations as taxonomic (label 0). It seems that differ-
ent symmetric features are considered by D-Model and 
C-Net for the classification of relations as taxonomic. 
D-Model considers features like 1620 (diagnosis; diag-
nosis) and 6300 (drug therapy; drug therapy) while 
C-Net primarily considers 1710 (chemistry; chemistry), 
1620 (diagnosis; diagnosis), 5400 (epidemiology; epi-
demiology), and 1800 (etiology; etiology) as positive 
factors for the identification of taxonomic relations. 
1710 (chemistry; chemistry) and 5400 (epidemiology; 
epidemiology) are not even considered by D-Model 
among its ten most impactful features for label 0 (taxo-
nomic). Interestingly, we see in Figure S1 that feature 
5400 (epidemiology; epidemiology) is rather very nega-
tively correlated to D-Model. Features 2340-2361-4209 
(genetics; genetics) and 5220 (physiopathology; physi-
opathology) which are considered among the most sig-
nificant features of the taxonomic relation classification 
for C-Net, are not among the most impactful features 
for D-Model. The existence of feature 4476 (metabo-
lism; genetics) among the most impactful ones for 
C-Net suggests that several non-symmetric features 
can stand for taxonomic relations, particularly when 
the two MeSH qualifiers are used as attributes for the 
same entity types. In our situation, metabolism11 and 
genetics12 are both subclasses of physiology13 and they 
are consequently used as characteristics of organs and 
species.

The lack of consideration of 5400 (epidemiology; epi-
demiology) by D-Model could partially explain why this 
model performs better than C-Net in the identification 

Table 4  Comparison of F1-Scores for the classification of the 
most common relation types using D-Model and C-Net. Best 
model in bold

Wikidata ID Relation type D-Model C-Net

P279 Subclass of 0.655 0.654

P530 Diplomatic relation 0.852 0.850

P31 Instance of 0.484 0.494
P2868 Subject has role 0.803 0.805
P681 Cell component 0.883 0.871

P2176 Drug or therapy used for treatment 0.959 0.961
P527 Has part 0.637 0.618

P2175 Medical condition treated 0.978 0.986
P1995 Health specialty 0.881 0.856

P682 Biological process 0.841 0.835

P703 Found in taxon 0.903 0.881

P780 Symptoms and signs 0.779 0.780
P171 Parent taxon 0.706 0.697

P47 Shares border with 0.000 0.000

P361 Part of 0.137 0.124

P680 Molecular function 0.710 0.620

P828 Has cause 0.584 0.562

P769 Significant drug interaction 0.528 0.543
P129 Physically interacts with 0.868 0.870

11  http://​id.​nlm.​nih.​gov/​mesh/​Q0003​78.
12  http://​id.​nlm.​nih.​gov/​mesh/​Q0002​35.
13  http://​id.​nlm.​nih.​gov/​mesh/​Q0005​02.

http://id.nlm.nih.gov/mesh/Q000378
http://id.nlm.nih.gov/mesh/Q000235
http://id.nlm.nih.gov/mesh/Q000502
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of taxonomic relations as shown in Table 2 and Fig. 22. 
In fact, this feature stands as a predictive factor for non-
biomedical symmetric relations, particularly the ones 
between countries as revealed in Fig.  8. The attention 
provided by C-Net for 2340-2361-4209 (genetics; genet-
ics) and 1710 (diagnostic imaging; diagnostic imaging) 
does not mean that D-Model does not consider these 
interesting features. Figure S1 reveals that 1710 (diag-
nostic imaging; diagnostic imaging) and to a lesser extent 
2340-2361-4209 (genetics; genetics) are also positive 
predictive features for the identification of taxonomic 
semantic relations for D-Model.

Biomedical symmetric (label 1)
The analysis of the most positively correlated features 
for the classification of semantic relations as biomedi-
cal symmetric (label 1) in D-Model (Fig.  11) and C-Net 
(Fig. 12) reveals that many of them are drug-related fea-
tures involving MeSH subheadings linked to pharmacol-
ogy like pharmacology, adverse effects, therapeutic use, 
pharmacokinetics, and analogs & derivatives. This is a 
direct result of the domination of biomedical non-sym-
metric relations by significant drug interactions (611 out 
of 640, 95%) as shown in Fig. 5. The results also show an 
agreement between D-Model and C-Net on the usage of 
symmetric features, particularly 1710 (diagnostic imag-
ing; diagnostic imaging), 3420 (pharmacology; pharma-
cology), 3600-3626 (adverse effects; adverse effects), and 
5760 (therapeutic use; therapeutic use) to identify bio-
medical symmetric relations.

Furthermore, Figures S2 and S7 show how the 10 most 
positively correlated features for one model architecture 
are distributed in another for the classification of label 1. 
From this we see that while all of the 10 most positively 
correlated feature for C-Net are likewise positively corre-
lated for D-Model, features 5914 (adverse effects; adverse 
effects) and 6750 (surgery; surgery), which are among the 
10 most impactful features in D-Model, are negatively 
correlated features for C-Net.

Non‑biomedical symmetric (label 2)
The evaluation of the most impactful features for the 
classification of relations as label 2 (non-biomedical sym-
metric) by D-Model (Fig.  13) and C-Net (Fig.  14) has 
shown 5400 (epidemiology; epidemiology) and 5401 (epi-
demiology; ethnology) as the most predictive factors for 
both architectures. D-Model also considers 5489 (ethnol-
ogy; epidemiology) and 5490 (ethnology; ethnology) as 
main features. These features are ones that have subject 
and object qualifiers that are equal or corresponding to 
two MeSH subheadings that are attributed to the same 
entity types, just as taxonomic and biomedical symmet-
ric relations, The higher prevalence of epidemiology and 

ethnology as impactful MeSH subheadings could be due 
to the domination of non-biomedical symmetric relations 
by diplomatic relations and shares border with state-
ments (Fig.  5). Several other symmetric features related 
to drugs and diseases such as 1620 (diagnosis; diagno-
sis) for D-Model and 1170 (chemistry; chemistry), 4500 
(metabolism; metabolism), 5850 (administration & dos-
age; administration & dosage), and 5914 (adverse effects; 
adverse effects) for C-Net are also identified as impactful 
ones. This could be due to the existence of several non-
biomedical relation types that can exist between biomed-
ical entities such physically interacts with (Fig. 5) that is 
broader than significant drug interactions and involves 
the interaction of drugs with human genes, proteins, and 
drugs. This is confirmed by the existence of several non-
symmetric features related to associations between drugs 
and human substances among the most significant fea-
tures such as 1620 (agonists; pharmacology), 3408-3429 
(pharmacology; genetics), 3432 (pharmacology; metab-
olism), and 4476 (metabolism; genetics). Despite the 
importance of these non-symmetric features, it is clear 
that their effect is limited when compared to the ones of 
symmetric features as shown in Figs. 13 and 14. This con-
firms again the value of features corresponding to equal 
subject and object MeSH subheadings to identify sym-
metric relations.

Figures  S3 and S8 show how the 10 most positively 
correlated features for one model architecture are dis-
tributed in another for the classification of label 2. From 
this we see that all of the 10 most positively correlated 
features for C-Net are likewise positively correlated for 
D-Model, except 4476 (metabolism; genet- ics), which 
seems to be negatively correlated for D-Model. Another 
interesting observation is that the 10 most positively cor-
related features present in C-Net have positive correla-
tion values significantly greater in D-Model.

Biomedical non‑symmetric (label 3)
The analysis of the most significant features for the 
identification of biomedical non-symmetric relations 
by D-Model (Fig. 15) and C-Net (Fig. 16) proves that all 
the considered features are non-symmetric except 2361 
(genetics; genetics) and 4500 (metabolism; metabolism) 
for C-Net. This fact slightly explains the better accuracy 
of D-Model for the classification of relations as bio-
medical non-symmetric ones as stated in Table  2 and 
Fig.  22. Even for C-Net, these features are both positive 
and negative predictors and this means that they do not 
have a conclusive predictive power and are just add-
ing noise to the supervised classification. The consensus 
between D-Model and C-Net in identifying several non-
symmetric features as positive predictors for biomedical 
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non-symmetric relations – specifically, 2392 (genetics; 
drug effects), 4505 (metabolism; enzymology), 5766 
(therapeutic use; drug therapy), and 5855 (administration 
& dosage; drug therapy) – demonstrates the effectiveness 
of these features in easily identifying two significantly 
represented biomedical non-symmetric relations: drug or 
therapy used for treatment and medical condition treated 
(Fig. 5). A better identification of features for other bio-
medical non-symmetric relation types would therefore 
be enabled through an enhanced representation of them 
in the MeSH2Matrix dataset. The fact that most of the 
features are drug-related involving analogs & derivatives, 
drug effects, therapeutic use, and metabolism is explained 
by the over-representation of drug-disease semantic rela-
tions (Fig. 5).

Figures S4 and S9 show how the 10 most positively cor-
related features for one model architecture are distrib-
uted in another for the classification of label 3. In Figure 
S9 we see a significantly greater positive correlation from 
D-Model and in Figure S4, we observe that three features 
– 2361 (genetics; genetics), 4500 (metabolism; metabo-
lism) and 5718 (therapeutic use; complications) – which 
are among the 10 most impactful for C-Net, are nega-
tively correlated features for D-Model.

Non‑biomedical non‑symmetric (label 4)
As for non-biomedical non-symmetric relation types, the 
assessment of the most important features for D-Model 
(Fig. 17) and C-Net (Fig. 18) surprisingly finds many sym-
metric features as impactful: 1170 (chemistry; chemistry) 
for D-Model, 2340-2361 (genetics; genetics) for C-Net, 
2430-2452 (immunology; immunology) for C-Net, 3420 
(pharmacology; pharmacology) for D-Model and C-Net, 
5400 (epidemiology; epidemiology) for D-Model, and 5850 
(administration & dosage; administration & dosage) for 
D-Model. This can be related to the possibility of using 

non-biomedical relation types such as has cause to charac-
terize statements linking between two biomedical relations 
of the same type. In contrast to biomedical non-symmetric 
relations, the impact of symmetric features is quite com-
parable to the one of non-symmetric ones. Even the non-
symmetric features that are positively correlated to the 
classification of relations as non-biomedical non-sym-
metric ones are linked to MeSH qualifiers that are attrib-
uted to the same entity type, particularly 1157 (chemistry; 
analysis) for D-Model, 1373 (analogs & derivatives; phar-
macology) for D-Model, 3788 (toxicity; metabolism) for 
D-Model, 3432 (pharmacology; metabolism) for D-Model 
and C-Net, 4463 (metabolism; chemistry) for C-Net, 
and 5849 (administration & dosage; therapeutic use) for 
D-Model. Such a result is mostly due to the confusion of 
non-biomedical non-symmetric relations with taxonomic 
relations as well as with non-biomedical symmetric rela-
tions as shown in Fig. 22. This is mainly due to the exist-
ence of causal, chemical and biological relation types that 
are not directly linked to medicine such as an isotopically 
modified form of, parent cell line or does not have cause 
and that can be too close to several taxonomic and non-
biomedical symmetric relations. We propose a solution to 
this confusion: splitting the matrices into an array of sym-
metric features and a matrix of non-symmetric features, 
separately train the models to classify relations based on 
symmetric features and non-symmetric ones as shown in 
Fig.  23, and restrict the use of symmetric features to the 
classification of taxonomic and symmetric relations.

Figures S5 and S10 show how the 10 most positively 
correlated features for one model architecture are dis-
tributed in another for the classification of label 4. Figure 
S5 demonstrates that, among the most impactful features 
for C-Net, 3420 (pharmacology; pharmacology) and 3432 
(pharmacology; metabolism) are positively correlated 
with D-Model.

Fig. 23  A diagram about splitting the MeSH2Matrix dataset into two specific datasets for classifying specific types of semantic relations



Page 25 of 28Turki et al. Journal of Biomedical Semantics           (2024) 15:18 	

Conclusion
Key findings
In this research paper, we proposed a novel approach to 
the classification of biomedical relations retrieved from 
Wikidata, an open and collaborative knowledge graph 
maintained by the Wikimedia Foundation, based on the 
association between the qualifiers of two semantically 
related MeSH keywords of PubMed scholarly publica-
tions. We generated MeSH2Matrix as a large-scale train-
ing dataset (covering 195 relation types involved in five 
superclasses) to enable the MeSH-based biomedical 
relation classification and we trained three benchmark-
ing machine-learning models (Support Vector Machine 
[SVM], a dense model [D-Model], and a convolutional 
neural network [C-Net]) to evaluate the efficiency of our 
approach to classify various types of biomedical rela-
tions. We found an interesting efficiency of our approach 
in biomedical relation classification proving the promis-
ing value of using Bibliometric-Enhanced Information 
Retrieval towards the improvement of biomedical rela-
tion classification. Then, we studied how the behavior 
of the confusion between the 195 relation types changes 
as label generalization occurs. Similarly, we created a 
confusion matrix for the superclass-based classification 
training. We found that our approach has better behav-
ior in classifying taxonomic, biomedical symmetric, and 
biomedical non-symmetric relations although several dif-
ferent behaviors can be observed inside the same super-
class. Finally, using integrated gradients, we performed 
comprehensive feature analyses of C-Net and D-Model to 
evaluate how the MeSH qualifier features impacted the 
model’s class predictions (using the 5-class prediction 
case). We identified the top 10 most positively correlated 
features (which we referred to as impactful features) for 
each model architecture and class label. We observed 
that the impactful features vary by class and by model 
architecture - with some features being positively corre-
lated in one architecture for a given class and negatively 
correlated in another model for the same class.

Limitations
Our approach lacks accuracy in classifying non-biomed-
ical relations such as subject has role and shares border 
with. This is mainly linked to the lack of MeSH qualifiers 
that characterize non-biomedical facets of the concepts. 
As well, a number of MeSH qualifiers do not contribute 
to the classification of biomedical relations. Getting rid 
of such MeSH qualifiers will allow rising the speed of the 
classification training without worrying about losing over-
all accuracy. From the perspective of using Wikidata as a 
benchmark for our approach, we found that Wikidata can 
include inconsistencies due to its open and collaborative 
editing policy that allows vandalism. This is practically 

proved by the lack of availability of research articles about 
a considerable rate of Wikidata relations in PubMed.

Future directions
As a future direction of this work, we look forward to opti-
mizing our approach for biomedical relation classification 
by considering the semantic features of the subjects and 
objects and revising our MeSH2Matrix dataset. Also, we 
propose to expand our approach into a method for con-
structing and enriching biomedical knowledge graphs based 
on PubMed MeSH Keywords. We envision coupling our 
method with knowledge-based approaches for biomedical 
entity recognition and relation extraction from the MeSH 
keywords of scholarly publications as well as to shape-based 
methods for the validation of biomedical ontologies, par-
ticularly ShEx and SHACL, for such a purpose.
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